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ABSTRACT
Rank aggregation has recently become a common approach for combining individual rank-
ings into a consensus and for quantifying and improving performance in various applica-
tions, such as elections, web page rankings, and sports. During the past few years, rankings
from many sources have become increasingly high-dimensional and partial. In this study, we
develop a rank aggregation method by constructing a directed weighted competition graph.
We introduce the concept of “ratio of out- and in-degrees (ROID)” to transform high-dimen-
sional partial rankings into a single consensus. Moreover, we provide a novel effectiveness
measure for the aggregate ranking according to its deviations from the ground truth rank-
ing. The proposed method is compared with four typical methods with synthetic rankings.
The results indicate that our method outperforms the other four by a significant margin and
can be particularly efficient in aggregating high-dimensional rankings. The empirical results
validate the effectiveness and feasibility of our method.
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1. Introduction

As an obligatory task of various selection and evalu-
ation boards, the problem of ranking has appeared
under many guises, such as world university ranking
(Thieme, Prior, Tortosa-Ausina, & Gempp, 2016),
web page ranking (Page, Brin, Motwani, &
Winograd, 1999), and sports ranking (Filippo,
2011). The ranking problem has been studied exten-
sively in the past few decades (Langville & Meyer,
2012). If there is only a single criterion for ranking,
the task is relatively easy. However, in many situa-
tions, one must consolidate a consensus ranking of
alternatives, given the individual ranking preferences
regarding several different criteria (Ahn, 2017;
Dwork, Kumar, Naor, & Sivakumar, 2001; Read,
Edwards, & Gear, 2000; Wang, Chin, & Yang,
2007). Aggregating individual rankings into a con-
sensus is the essence of the group-ranking problem
in social choice theory (Cook & Kress, 1990), where
a group of voters rank the available alternatives. A
voting rule is then applied to identify the best alter-
native or to aggregate each rank into a consensus
regarding the alternatives (Aledo, G�amez, & Molina,
2016; Baucells & Sarin, 2003). This task is known as
the “rank aggregation problem” (Aledo, G�amez, &
Alejandro, 2017, 2018; Cook & Kress, 1990). This
problem has penetrated many areas of decision-
making and evaluation, such as meta-search engines

(Dwork et al., 2001) and disease-related genes selec-
tion (Kolde, Laur, Adler, & Vilo, 2012). Many rank
aggregation methods, including the Borda’s method
(Borda, 1781; Langville & Meyer, 2012), the
Dowdall method (Reilly, 2002), the minimum viola-
tions ranking method (Ali, Cook, & Kress, 1986;
Chartier, Kreutzer, Langville, Pedings, & Yamamoto,
2010; Park, 2005; Pedings, Langville, & Yamamoto,
2012), the FAST method (Amodio, D’Ambrosio, &
Siciliano, 2016), the footrule method (Dwork et al.,
2001) and the Markov chain method (Dwork et al.,
2001), have been proposed over the past
few centuries.

Rank aggregation methods can be classified into
two categories: heuristic methods and optimization
methods (Argentini & Blanzieri, 2012). Many classic
methods belong to the heuristic group. They aim to
assign an index to each alternative that can be
sorted to define a consensus ranking. Alternatively,
optimization methods aim to find a consensus rank-
ing minimizing the distance to or violations of the
input rankings using a specified ranking distance or
violation measure, such as the Kendall tau distance
or Spearman footrule distance. Rankings from many
multiple-criteria decision-making problems arising
from the rapid development of information technol-
ogy have become increasingly high-dimensional and
partial, as a large number of rankings are given by
voters, but each voter can only rank a subset of the
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universal set of alternatives. This kind of input is
typical in the ranking of commodities, movies or
brands. It is also important to note that these rank-
ings may be inaccurate due to the limited judgment
ability of voters. Aggregating such high-dimensional,
inaccurate and partial rankings presents immense
challenges related to both effectiveness and effi-
ciency. This article introduces a graph-based rank
aggregation method and a new index called ROID
for this problem. The theoretical underpinnings of
stating new criteria in effective rank aggregation
methods are provided, and our method is compared
with several typical methods using a newly proposed
experimental data generation method (Xiao, Deng,
Wu, Deng, & Lu, 2017). The experimental results
indicate that the proposed method is successful.

The remainder of this article is organized as fol-
lows. We first introduce four typical rank aggregation
methods and describe the experimental data gener-
ation method in Section 2. The newly proposed
method is introduced in Section 3 and compared with
four typical methods in Section 4. In Section 5, the
new method is applied to an empirical dataset. A
summary of the contributions of this article and a dis-
cussion of future work are given in Section 6.

2. Preliminaries

2.1. Borda’s method

As one of the most typical rank aggregation methods
(Borda, 1781), the Borda’s method has been widely
used in the past few centuries (Aledo et al., 2016).
Given k rankings R1,R2, :::,Rk, for each alternative
a 2 Ri, the alternative a is first assigned a score BiðaÞ
equal to the number of alternatives that a outranks in
ranking Ri. Next, the Borda count BðaÞ of alternative
a is calculated as

Pk
i¼1 BiðaÞ. The alternatives are then

sorted in the descending order based on their Borda
counts to create a consensus ranking.

2.2. Dowdall method

As a “modified” form of the Borda’s method, the
Dowdall method has been widely used in political elec-
tions in many countries (Reilly, 2002). Given k rankings
R1,R2, :::,Rk, for each alternative a 2 Ri, alternative a
is first assigned a score DiðaÞ equal to the reciprocal of
its rank in ranking Ri. Next, the total score DðaÞ of
alternative a is calculated as

Pk
i¼1 DiðaÞ. The alterna-

tives are then sorted in the descending order based on
their total scores to create a consensus ranking.

2.3. Minimum violations ranking method

As its name suggests, the minimum violations rank-
ing method searches specifically for consensus

rankings with the minimum violations (Park, 2005).
Typically, the binary integer linear program (BILP)
formulation of the MVR problem is a preferred way
of finding the optimal consensus ranking (Chartier
et al., 2010; Langville & Meyer, 2012; Pedings et al.,
2012). Denote by xij the decision variables that
determine whether alternative ai should be ranked
above alternative aj. Specifically,

xij ¼ 1, if ai is ranked above aj
0, otherwise:

�
(1)

Several constraints must be added to force matrix
X to have the properties that meet the basic needs for
producing a unique ranking of the n alternatives:

xij þ xji ¼ 1; xij þ xjk þ xki � 2 (2)

Given k rankings R1,R2, :::,Rk of the n alterna-
tives, we define the following ranking scores for any
pair of objects (Langville & Meyer, 2012):

cij ¼ ð # of rankings with ai above ajÞ
�ð # of rankings with ai below ajÞ:

(3)

The objective of MVR is to find the consensus
ranking, maximizing the conformity among input
rankings. In terms of ranking scores cij and variables
xij, this maximization problem becomes:

max
Xn
i¼1

Xn
j¼1

cijxij: (4)

BILPs are typically solved with a technique called
“branch and bound”, that uses a series of linear pro-
gramming (LP) relaxations of the problem to form a
tree to narrow down the process of stepping
through the discrete solution space (Langville &
Meyer, 2012). When the branch and bound proced-
ure terminates with an optimal solution X�, we can
obtain a MVR consensus ranking by sorting the col-
umn sums of X� in the ascending order (Langville
& Meyer, 2012).

2.4. Borda(Mr) method

Aledo et al. (Aledo et al., 2016) proposed using the
concept of extension sets to manage the unobserved
information, i.e., to deal with the uncertainty associ-
ated with the items not appearing in a given ranking
by considering the positions of the ranking in which
they could be placed.

Given a partial ranking p and a permutation r, r
is consistent with p if for all alternatives ai, aj
ranked in p, one of the two following condi-
tions holds:

(1) ai and aj share same rank in p,
(2) if ai outranks aj in p, then ai must outrank aj

in r, and vice versa.

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

2 Y. XIAO ET AL.



Then, the extension set of ranking p is

EðpÞ ¼ frjr is consistent with pg:
Note that a non-ranked alternative of p can be

ranked in r between two alternatives that share the
same rank in p. Given this possibility, the research-
ers proposed the concept of restricted consistent
permutations.

r is restricted consistently with p if for all alter-
natives ai, aj ranked in p, the two following condi-
tions hold:

(1) r is consistent with p,
(2) 8at that is not ranked in p cannot be ranked

between ai and aj that share same rank in p.

The researchers call ErðpÞ the restricted extension
set of partial ranking p,

ErðpÞ ¼ frjr is restricted consistent with pg:
To accomplish rank aggregation with extension

sets and restricted extension sets, the researchers
first introduce the concept of precedence exten-
sion value.

Given a ranking p and two alternatives ai and aj,
the precedence extension value VijðpÞ of p between
ai and aj is defined by

VijðpÞ ¼ 1
jEðpÞj

X
r2EðpÞ

1ðai outranks ajÞ (5)

From the definition above, it follows immediately
that VijðpÞ ¼ 1� VjiðpÞ.

Given N rankings p1, p2,…pk,…pN , the research-
ers then define the precedence extension matrix M ¼
½Mij�i, j¼1:n by

Mij ¼ 1
N

XN
k¼1

VijðpkÞ

¼ 1
N

XN
k¼1

1
jEðpkÞj

X
r2EðpkÞ

1ðai outranks ajÞ
(6)

Similarly, the restricted precedence extension val-
ues Vr

ijðpÞ of p between ai and aj are defined by

Vr
ijðpÞ ¼

1
jErðpÞj

X
r2ErðpÞ

1ðai outranks ajÞ (7)

The restricted precedence extension matrix Mr ¼
½Mr

ij�i, j¼1:n is defined by

Mr
ij ¼

1
N

XN
k¼1

Vr
ijðpkÞ

¼ 1
N

XN
k¼1

1
jErðpkÞj

X
r2ErðpkÞ

1ðai outranks ajÞ
(8)

Using matrices M and Mr computed in Equations
6 and 8, the researchers apply Borda(M) and

Borda(Mr) methods to obtain the consensus rank-
ings by sorting the column sums of M and Mr in
the ascending order. It should be noted that we use
the aggregated ranking obtained from the restricted
precedence extension matrix Mr to perform experi-
ments and name it BM(Mr) in this article.

2.5. Experimental data generation method

Most previous studies evaluated and compared rank
aggregation methods using real-world datasets that
were limited not only because they were typically
hard to obtain but also because they lacked ground
truth ranking of alternatives to evaluate the effect-
iveness of rank aggregation, and used the totalized
Kendall tau distance between the aggregated ranking

and all the input rankings,
PN

i¼1 KðR̂,RiÞ, as the
measure to evaluate the effectiveness. The essence of
this traditional measure is to characterize the cen-
trality of the aggregated ranking with respect to
individual rankings, whereas the centrality is not
equivalent to correctness. Therefore, a proper
benchmark synthetic data generation method is
needed to evaluate rank aggregation methods in
rank aggregation research. Note that we use the
experimental data generation method developed by
Xiao et al. (Xiao et al., 2017) that can provide
ground truth ranking of alternatives to perform
experiments.

Consider a rank aggregation problem with M vot-
ers and N alternatives. The researchers first assume
that there exists a ground truth ranking of the alter-
natives, which can be the latent ranking of the
actual strengths of each alternative that individual
voters and by extension, the rank aggregation itself
are attempting to estimate given the displayed abil-
ities of those alternatives. To acquire it, the
researchers denote the inherent ability of alternative
aj by /j. It may be a certain attribute of aj, such as
the height of a person, or the quality of a product.
The researchers assume that /j follows a uniform
distribution in the region ½0, 1�. Then, the ground
truth rank rj of aj is acquired based on /j, and the
ground truth ranking of alternatives is denoted by
R0 ¼ ½r1, r2, :::, rM�. Intuitively, a larger inherent abil-
ity of an alternative corresponds to a higher rank.
The researchers introduce ~/ij, the displayed inherent
ability of alternative aj for voter bi, and assume that
voters rank alternatives based on it because voters
may not be perfectly aware of /j in practice. Denote
by Ri ¼ ½~ri1,~ri2, :::,~riM� the ranking given by voter
bi, where ~rij is the rank of alternative aj. As shown
in Figure 1, ~/ij is a random variable following a
uniform distribution in the region ½/j � /jð1� bijÞ,
/j þ ð1� /jÞð1� bijÞ�. Variable bij 2 ½0, 1� repre-
sents the accuracy of the displayed inherent ability
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of alternative aj for voter bi; note that a larger bij
results in a narrower distribution region and a more
accurate displayed inherent ability ~/ij. Similarly to the
authors, in this article, we assume that the displayed
accuracy bij is the same for all alternatives and voters,
i.e., bij ¼ b for all i 2 ½1,M� and j 2 ½1,N�.

In Ri, if voter bi does not rank aj,~rij ¼ 0. Then,
the length of ranking Ri is Li ¼ jf~rijj~rij > 0,
1 � j � Mgj, and 0 � Li � M. Li is a random vari-
able following a uniform distribution in the region
½L0 � DL, L0 þ DL�, as shown in Figure 2. Parameter
L0 2 ½0,M� represents the baseline length of individ-
ual rankings, and 0 � DL < L0 represents the vari-
ation in the individual ranking lengths.

Using this experimental data generation method,
the researchers propose measuring the effectiveness
of rank aggregation methods by the Kendall tau dis-
tance D between the aggregated ranking R̂ and the
ground truth ranking R0 that counts the number of
pairwise disagreements between two rankings and
can be written as follows:

D ¼ KðR̂,R0Þ ¼jfðai, ajÞji < j, R̂ðaiÞ < R̂ðajÞ,
but R0ðaiÞ > R0ðajÞgj:

(9)

Note that R̂ðaÞ and R0ðaÞ are the ranks of the
alternatives. Intuitively, the smaller the value of D is,
the more effective the rank aggregation method.
Instead of centrality of the aggregated ranking, this
measure D characterizes the correctness of the aggre-
gated ranking.

3. Graph-based rank aggregation method

3.1. Competition graph of alternatives

Consider M rankings of N alternatives given by
M voters. The ranking matrix is denoted by
R ¼ ðrijÞM�N , where rij represents the rank of alter-
native aj given by voter bi. Note that voters
may only rank a small number of alternatives; rij
¼ 0 if voter bi did not rank alternative aj. A
simple example of alternative rankings given by
voters is shown in Table 1 for 8 voters and 5

alternatives. The corresponding ranking matrix is
as follows:

R ¼

5 4 3 2 1
0 4 2 3 1
3 4 1 2 0
0 3 2 0 1
4 3 2 1 0
4 3 0 2 1
3 4 2 0 1
4 3 0 1 2

2
66666666664

3
77777777775
: (10)

The transition matrix for voter bi is denoted by
Pi ¼ ðpistÞN�N , where pist ¼ 1 if alternative as
outranks alternative at according to voter bi
(0 < ris < rit); otherwise, pist ¼ 0. If there is a tie,
i.e., ris ¼ rit, we assume that pist ¼ pits ¼ 1. As an
example, the transition matrix for voter b8 shown in
Table 1 is

P8 ¼

0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
1 1 0 0 1
1 1 0 0 0

2
66664

3
77775 (11)

Based on the transition matrix, we define the
competition matrix as A ¼ ðastÞN�N , where
ast ¼

PM
i pist. In the example shown in Table 1, the

competition matrix A is

A ¼

0 2 0 0 0
4 0 0 0 0
4 6 0 2 0
5 6 2 0 1
4 6 4 3 0

2
66664

3
77775 (12)

Based on the competition matrix, the competition
graph is defined by G ¼ ðV ,EÞ, where V is the set
of nodes representing alternatives, and E � V � V
is the set of edges representing the win-loss records
among the alternatives. If ast> 0, then there is a
directed edge est with the weight ast between alterna-
tive as and alternative at. The weight of the directed
edge est represents the number of times alternative
as is ranked ahead of alternative at across the
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Figure 2. Length of an individual ranking Ri.

Figure 1. Displayed inherent ability of aj for voter bi.
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spectrum of all rankings being aggregated. Figure 3
shows the competition graph for the above example.

3.2. Aggregated alternative rankings

To obtain the final alternative rankings by aggregat-
ing the rankings given by voters, let dþj in the com-
petition graph G be the out-degree of node vj (the
sum of weights of all edges departing from node vj),
and let d�j be the in-degree of node vj (the sum of
weights of all edges leading to node vj). The out-
and in-degrees of node vj can thus be calculated as
follows:

dþj ¼
XN
t¼1

ajt , (13)

and

d�j ¼
XN
s¼1

asj: (14)

Following intuition, we can define the ratio of
out- and in-degrees (ROID)

gj ¼ dþj =d
�
j (15)

to quantify the strength of alternative aj. An alterna-
tive with a larger dþj and a smaller d�j might have a
higher rank. However, in the two extreme cases
dþj ¼ 0 or d�j ¼ 0, the above approach may be
problematic. To overcome this, we consider adding

to the competition graph a virtual “super” node
connected to each node by two directed edges lead-
ing to and from it. That is, an extra “super” alterna-
tive is added that is superior to the other
alternatives once and, at the same time, was inferior
to the other alternatives once. Then, we modify the
formula for the “ratio of out- and in-degree” as
follows:

gj ¼
dþj þ 1

d�j þ 1
(16)

Using the ratio of out- and in-degrees (ROID) as
the criterion, we sort all alternatives and denote the
aggregated ranking by R̂. The ROIDs of 5 alterna-
tives in the above example are shown in Table 2,
and the aggregated ranking is R̂ ¼ ½a5, a4, a3, a2, a1�.
We call this method the “competition graph
(CG) method”.

3.3. Desirable properties

Most of the rank aggregation methods are inspired
by results obtained in social choice theorywhich
studies how to aggregate the individual preferences
to reach a collective consensus. In social choice the-
ory, there are several desirable properties and
requirements for the voting systems (Arrow, 1950,
1952; Fishburn, 1977; Moritz, Reich, Schwarz, Bernt,
& Middendorf, 2015), i.e. universality, monotonicity,
transitivity, independence of irrelevant alternatives,
non-imposition and non-dictatorship. It is worthy
discussing those properties and requirements for the
rank aggregation even though it has been proven
that no system can have all these properties.

In our method, universality is agreed because vot-
ers are free to rank alternatives. Monotonicity
imposes that if an alternative ai rises or does not fall
in the ranking of each voter without any other
change in those rankings and if ai was preferred to
another alternative aj before the changes in individ-
ual rankings, then ai is still preferred to aj. In our
method, this corresponds that the winning record of
ai at least once more than it of aj while the losing
record of ai at least once less than it of aj in each
individual ranking, which means that the alternative
ai receives a bigger dþi but a smaller d�i compared
with aj (d

þ
i � dþj þM and d�i � d�j �M, where M

is the number of the input rankings). Consequently,
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Table 1. Example of alternative rankings given by voters,
where N¼ 5 and M¼ 8.
voter ranking

b1 ½ a5 a4 a3 a2 a1 �
b2 ½ a5 a3 a4 a2 �
b3 ½ a3 a4 a1 a2 �
b4 ½ a5 a3 a2 �
b5 ½ a4 a3 a2 a1 �
b6 ½ a5 a4 a2 a1 �
b7 ½ a5 a3 a1 a2 �
b8 ½ a4 a5 a2 a1 �

Table 2. Aggregated rank of five alternatives based on the
competition graph.
alternative dþj d�j gj rank

a1 2 17 0.17 5
a2 4 20 0.24 4
a3 12 6 1.86 3
a4 14 5 2.50 2
a5 17 1 9.00 1

Figure 3. Competition graph for the example shown in
Table 1.
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the gi ¼ dþi þ1
d�i þ1 will become bigger than it of aj, which

means that the alternative ai will be ranked above aj
in the final consensus ranking. In this sense, this
property is agreed with our method.

Transitivity states that if an alternative ai is pre-
ferred to another alternative aj which is preferred to
a third alternative ak, then surely, ai is preferred to
ak. In our method, if ai is preferred to aj, there
must be gi > gj, and similarly, gj > gk. Given this,
we have gi > gk, which means that ai is preferred to
ak. Thus, we can believe that our method agrees
with this property.

Independence of irrelevant alternatives (IIA)
states that the relation of preference between two
alternatives cannot depend on others alternatives
being present or absent. While for our method, in
the competition graph, the removal or addition of
nodes can change the structure of the graph, and
our method focuses primarily on the macroscopic
and statistical index of all alternatives in the compe-
tition graph, as a result, the final aggregated ranking
can be thus changed to some extent. On the other
hand, if a rank aggregation method can give stable
results despite changes in the input rankings, then
this method can be considered to be robust, which
is a desirable property. In this sense, IIA can be
connected with the robustness research in this field,
and this is what we have been studying recently.

In addition, we treat all input rankings equally,
which means that non-imposition and non-dictator-
ship are also agreed in our rank aggrega-
tion method.

4. Comparison with typical rank
aggregation methods

To test the effectiveness of the proposed method
(CG), in this section, we compare it with four typ-
ical rank aggregation methods introduced in Section
2: the Borda’s method (BM), the Dowdall method
(DM), Borda(Mr) and the minimum violations

ranking method (MVR). We use the benchmark
model introduced in Section 2.5 to generate syn-
thetic data with different ranking accuracies
and lengths.

4.1. Comparison of effectiveness for different
ranking accuracies

To compare the effectiveness of the five methods in
aggregating rankings with different accuracies, we
perform numerical experiments and present the
effectiveness measures of rank aggregation methods
D with various b and L0 in Figure 4. The specific
data is also presented in Table 3. It can be observed
that as the value of the ranking accuracy b increases,
the value of the effectiveness measure D decreases
rapidly, indicating that rank aggregation methods
with high ranking accuracy b are more effective;
this agrees with our intuition.

In particular, a threshold for ranking accuracy b
is found, i.e., the value, above which the ranking
accuracy rises, and the proposed method (CG) out-
performs the other four methods. It should be noted
that the threshold depends on the baseline length of
the ranking L0 and the variation of ranking length
DL. For instance, the threshold is 0.3 if L0 ¼ 50 and
DL ¼ 15, while the threshold could be slightly less
than 0.3 if L0 ¼ 30 and DL ¼ 9.

In addition, we observed that when the accuracy
b is high (equal to 0.9), MVR can be as effective as
our CG method, whereas in the scenarios of low
ranking accuracies, our CG method can perform
much better than MVR because, as an optimization
method, MVR is not robust to the noise or errors in
the input rankings. In contrast, the graph-based CG
method focuses not on the relationship of a single
pair of alternatives but primarily on the macroscopic
and statistical index of alternatives. In this sense,
our CG method can be robust to the noise or errors
in the input rankings. As a result, CG can aggregate
the inaccurate rankings more effectively.
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Figure 4. Effectiveness measure D vs. ranking accuracy b for various L0, where N¼ 100, M¼ 1000 and DL ¼ 0:3L0. The results
were averaged over 100 independent trials.
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4.2. Comparison of effectiveness for different
ranking lengths

To compare the effectiveness of the five methods in
aggregating rankings with different ranking lengths,
we perform a host of experiments and display the
effectiveness measure D as a function of the baseline
length L0 at various b in Figure 5. The specific data
is shown in Table 4. It is observed that increased
values of L0 were associated with decreased values
of measure D, indicating that the effectiveness of
rank aggregation methods was better for larger base-
line ranking lengths L0. This finding was expected
because larger baseline ranking lengths L0 were associ-
ated with more complete evaluation information.

We observe that, in most cases, the proposed
method produces much better results than those of
the other four methods, especially when the baseline
length is small. Moreover, we observe that BM and
DM perform poorly in general, especially when the
ranking length is small. The reason is that BM and
DM only use part of the ranking information to

complete the aggregation. In fact, the Borda count
of the alternative aj is merely the out-degree dþj of
vj in our method, which means that BM only con-
siders the occurrences of winning but ignores those
of losing. Thus, BM cannot evaluate the alternatives
comprehensively. It should be noted that the rank-
ings in many early applications were mostly the
complete lists; thus, BM has become one of the
most widely used rank aggregation methods.
Moreover, we can observe from Figure 5 that if the
ranking length is small, the difference in effective-
ness between BM (DM) and CG is distinct, while it
becomes very small if the rankings are nearly com-
plete, which further strengthens the analysis above.

4.3. Comparison of computational efficiency

To demonstrate the computational efficiency of our
methods, we have performed numerical experiments
with several large values of M, where N was fixed at
100, and presented the running time T using the
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Table 3. Effectiveness measure D vs. ranking accuracy b for various L0, where N¼ 100, M¼ 1000 and DL ¼ 0:3L0. Values in
bold and italic represent the best effectiveness measures among the five methods. The results were averaged over 100 inde-
pendent trials.

b

L0¼10 L0¼30 L0¼50

BM DM BM(Mr) MVR CG BM DM BM(Mr) MVR CG BM DM BM(Mr) MVR CG

0.1 1707 1494 1227 1283 1236 1123 680 738 808 747 866 459 594 631 600
0.3 731 629 435 466 424 401 266 234 258 225 273 177 177 201 174
0.5 405 375 237 240 191 211 167 123 135 96 139 108 89 105 72
0.7 297 306 181 134 99 151 145 88 75 42 96 94 58 54 30
0.9 249 268 141 58 61 122 129 67 24 18 77 83 42 13 9

(a)  =0.2� (b)  =0.5� (c)  =0.8�

� �rBM MBM DM CGMVR

Figure 5. Effectiveness measure D vs. the baseline length L0 for various b, where N¼ 100, M¼ 1000 and DL ¼ 0:3L0. The
results were averaged over 100 independent trials.

Table 4. Effectiveness measure D vs. the baseline length L0 for various b, where N¼ 100, M¼ 1000 and DL ¼ 0:3L0. Values
in bold and italic represent the best effectiveness measures among the five methods. The results were averaged over 100
independent trials.

L0

b¼ 0.2 b¼ 0.5 b¼ 0.8

BM DM BM(Mr) MVR CG BM DM BM(Mr) MVR CG BM DM BM(Mr) MVR CG

10 1067 914 654 729 665 405 375 237 240 191 267 287 157 94 74
30 623 383 382 414 381 211 167 123 135 96 132 138 75 50 28
50 443 262 289 316 290 139 108 89 105 72 86 89 50 32 19
70 322 196 245 266 245 95 80 69 85 60 53 60 32 23 15
90 244 161 218 237 219 66 58 56 71 53 30 37 20 17 12
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semi-logarithmic scale for various M and L0 in
Figure 6. We observe that the CG method can
always be more efficient than the four other meth-
ods in different situations. To show the efficiency of
our method more clearly, in Table 5, we have listed
the running time T of the CG method for several
large values of M. We observe that CG can aggre-
gate the high-dimensional rankings in a very short
time (less than 0.01 second) even if there are 10,000
rankings. Note that due to the “for” loops running
very slowly in MATLAB, BM(Mr) did not perform
as well as other methods. All experiments were per-
formed using a computer with Intel dual-core i5
CPU and 4GB of RAM, running Windows 7. All
methods were implemented in MATLAB-R2013b.

5. Empirical analysis

Although the proposed rank aggregation method
performed well in experiments using synthetic data-
sets, its practical application remains unconfirmed.
Therefore, it is imperative to apply the method to
an empirical dataset. We choose the teacher rank-
ings given by students as the empirical data. There
are two reasons teacher rankings are suitable for
this study. In the context of student evaluation of
teachers where students rank teachers rather than
rate them, a large number of rankings are first given
by students describing their interactions as well as
the win-loss records of teachers. Second, it is con-
ceivable that these rankings are extremely partial
due to each student being taught by a small subset
of teachers. In this sense, student evaluations of

teachers represent an optimal source of data. A real-
world dataset as of 2015 from the National
University of Defense Technology, China, was used
for this purpose, with the total of 7199 students and
1139 teachers. It should be noted that the large
number of students and the diversity of the stu-
dents’ curricula ensured that the competition graph
of teachers was connected.

In this dataset, the lengths of rankings varied
from 5 to 28 with an average of 13. These individual
rankings were remarkably partial relative to the total
number of teachers (1139). The largest ROID in the
dataset was 238, with out-degree of 237 and in-
degree of 0, i.e., all of 237 students taught by the
respective teacher ranked that teacher as the first.
Conversely, the smallest ROID was 0, with in-degree
of 15 and out-degree of 0, i.e., all of 15 students
taught by the respective teacher ranked that teacher
as the last. We analysed the final result and deter-
mined that teachers of required courses performed
better than those of elective courses (p-value ¼
0.01438). The average ROID for teachers of required
courses was 2.15, whereas it was only 1.06 for teach-
ers of elective courses.

To assess the effectiveness and feasibility of our
method, we have performed an extensive practical
survey following the final teacher ranking. The
results of the survey show that the final aggregated
ranking of teachers is a good reflection of the actual
situation and fits the expectations of evaluation
experts well. We observe that most of the top-10
teachers in the final ranking have won the national
award for teaching. For instance, Wei Chen, a
teacher from the College of Computer Science who
placed second in the final ranking with ROID of
17.27 (out-degree of 776 and in-degree of 44), has
won the first prize in the National Teaching
Competition 2016. Another example, Daquan Liu, a
teacher at the College of Space Science and
Engineering who placed fourth in the final ranking
with ROID of 14.93 (out-degree of 208 and in-
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Figure 6. Running time T vs. number of voters M for various L0, where b ¼ 0:5 and DL ¼ 0:3L0. The results were averaged
over 100 independent trials.

Table 5. Running time T of CG vs. number of voters M for
various L0, where N¼ 100, b ¼ 0:5 and DL ¼ 0:3L0. The
results were averaged over 100 independent trials.
M L0 ¼ 10 L0 ¼ 30 L0 ¼ 50

1000 0.001 0.002 0.002
5000 0.001 0.002 0.002
10000 0.002 0.002 0.002
50000 0.003 0.003 0.003
100000 0.004 0.004 0.004
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degree of 13), was the winner of the Award for
Bringing up Talents in Universities.

6. Conclusions and discussion

With the increasing emphasis on the problem of
multiple-criteria decision-making, rank aggregation
has emerged as an effective approach to this scen-
ario, attracting significant attention from various
fields for several decades. However, the expected
roles and tasks of rank aggregation methods arising
from the rapid development of information technol-
ogy are increasingly comprehensive and necessary
for decision-making. The task of aggregation of
high-dimensional and partial rankings is encoun-
tered in many situations, posing challenges to exist-
ing rank aggregation methods.

In this article, a graph-based rank aggregation
method has been proposed for aggregating large
numbers of partial rankings into a consensus. In
this method, we first defined the competition graph
based on the competition matrix, in which the
nodes represented alternatives, the directed edges
represented the win-loss records among the alterna-
tives, and the weights of a directed edge represented
the number of times an alternative was ranked
ahead of another alternative. Afterwards, we intro-
duced the concept of the “ratio of out- and in-
degrees (ROID)” as a new index for evaluating alter-
natives. The proposed method was compared with
four typical rank aggregation methods using various
synthetic data. Results suggested that the proposed
method could significantly outperform other meth-
ods, especially in cases of low accuracy and incom-
plete information. Compared with rank aggregation
methods based on optimization, such as MVR, our
graph-based method is more robust to the noise or
errors in the input rankings. Furthermore, because
BM and DM use only part of the ranking informa-
tion to complete the aggregation, these methods
always perform poorly when the rankings are par-
ticularly partial. In contrast, the proposed method
overcomes this drawback by considering the losing
records and developing a novel approach to evaluat-
ing the alternatives. In addition, the computational
efficiency of our method is particularly high in
aggregating high-dimensional rankings.

Real-world experimental results based on the
teacher rankings given by students were used to
demonstrate the applicability of the novel method to
aggregating high-dimensional partial rankings. It
should be noted that this method could also be
applied to other evaluation problems, including pol-
itical elections, world university rankings, movie rec-
ommendations, or brand evaluations. In the future,
we will extend our method to specific application

contexts. We must note that we do not consider the
strength of the opponents when calculating the
ROID of the alternatives. However, this problem
could be solved if we performed the competition
matrix operation iteratively. In conclusion, the pro-
posed method provides insights into the rank aggre-
gation research and can be an effective and efficient
tool for aggregating high-dimensional and par-
tial rankings.
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